Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 136, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254126

RESUMO

BACKGROUND: Increasing evidence indicates that the tumor microenvironment (TME) is a crucial determinant of cancer progression. However, the clinical and pathobiological significance of stromal signatures in the TME, as a complex dynamic entity, is still unclear in esophageal squamous cell carcinoma (ESCC). METHODS: Herein, we used single-cell transcriptome sequencing data, imaging mass cytometry (IMC) and multiplex immunofluorescence staining to characterize the stromal signatures in ESCC and evaluate their prognostic values in this aggressive disease. An automated quantitative pathology imaging system determined the locations of the lamina propria, stroma, and invasive front. Subsequently, IMC spatial analyses further uncovered spatial interaction and distribution. Additionally, bioinformatics analysis was performed to explore the TME remodeling mechanism in ESCC. To define a new molecular prognostic model, we calculated the risk score of each patient based on their TME signatures and pTNM stages. RESULTS: We demonstrate that the presence of fibroblasts at the tumor invasive front was associated with the invasive depth and poor prognosis. Furthermore, the amount of α-smooth muscle actin (α-SMA)+ fibroblasts at the tumor invasive front positively correlated with the number of macrophages (MØs), but negatively correlated with that of tumor-infiltrating granzyme B+ immune cells, and CD4+ and CD8+ T cells. Spatial analyses uncovered a significant spatial interaction between α-SMA+ fibroblasts and CD163+ MØs in the TME, which resulted in spatially exclusive interactions to anti-tumor immune cells. We further validated the laminin and collagen signaling network contributions to TME remodeling. Moreover, compared with pTNM staging, a molecular prognostic model, based on expression of α-SMA+ fibroblasts at the invasive front, and CD163+ MØs, showed higher accuracy in predicting survival or recurrence in ESCC patients. Regression analysis confirmed this model is an independent predictor for survival, which also identifies a high-risk group of ESCC patients that can benefit from adjuvant therapy. CONCLUSIONS: Our newly defined biomarker signature may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for reversing the fibroblast-mediated immunosuppressive microenvironment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/patologia , Linfócitos T CD8-Positivos/metabolismo , Prognóstico , Fibroblastos/metabolismo , Microambiente Tumoral
3.
Cell Death Differ ; 30(2): 527-543, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526897

RESUMO

Anillin (ANLN) is a mitosis-related protein that promotes contractile ring formation and cytokinesis, but its cell cycle-dependent degradation mechanisms in cancer cells remain unclear. Here, we show that high expression of ANLN promotes cytokinesis and proliferation in esophageal squamous cell carcinoma (ESCC) cells and is associated with poor prognosis in ESCC patients. Furthermore, the findings of the study showed that the deubiquitinating enzyme USP10 interacts with ANLN and positively regulates ANLN protein levels. USP10 removes the K11- and K63-linked ubiquitin chains of ANLN through its deubiquitinase activity and prevents ANLN ubiquitin-mediated degradation. Importantly, USP10 promotes contractile ring assembly at the cytokinetic furrow as well as cytokinesis by stabilizing ANLN. Interestingly, USP10 and the E3 ubiquitin ligase APC/C co-activator Cdh1 formed a functional complex with ANLN in a non-competitive manner to balance ANLN protein levels. In addition, the macrolide compound FW-04-806 (F806), a natural compound with potential for treating ESCC, inhibited the mitosis of ESCC cells by targeting USP10 and promoting ANLN degradation. F806 selectively targeted USP10 and inhibited its catalytic activity but did not affect the binding of Cdh1 to ANLN and alters the balance of the USP10-Cdh1-ANLN complex. Additionally, USP10 expression was positively correlated with ANLN level and poor prognosis of ESCC patients. Overall, targeting the USP10-ANLN axis can effectively inhibit ESCC cell-cycle progression.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/metabolismo , Proteínas Contráteis/metabolismo , Ubiquitina/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Cell Death Dis ; 13(5): 496, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614034

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the world's leading causes of death, and its primary clinical therapy relies on surgical resection, chemotherapy, radiotherapy, and chemoradiotherapy. Although the genomic features and clinical significance of ESCC have been identified, the outcomes of targeted therapies are still unsatisfactory. Here, we demonstrate that mitogen-activated protein kinase (MAPK) signaling is highly activated and associated with poor prognosis in patients with ESCC. Mitogen-activated protein kinase kinase (MEK) inhibitors efficiently blocked the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in ESCC, while signal transducer and activator of transcription 3 (STAT3) signaling was rapidly activated. Combined STAT3 inhibition prevented the emergence of resistance and enhanced MEK inhibitor-induced cell cycle arrest and senescence in vitro and in vivo. Mechanistic studies revealed that the suppressor of cytokine signaling 3 (SOCS3) was downregulated, resulting in an increase in STAT3 phosphorylation in MEK-inhibited cells. Furthermore, chromatin immunoprecipitation showed that ELK1, which was activated by MEK/ERK signaling, induced SOCS3 transcription. These data suggest that the development of combined MEK and STAT3 inhibition could be a useful strategy in ESCC targeted therapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases , Fator de Transcrição STAT3 , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras da Sinalização de Citocina/metabolismo
5.
Nat Commun ; 12(1): 7335, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921160

RESUMO

The tumor microenvironment is a highly complex ecosystem of diverse cell types, which shape cancer biology and impact the responsiveness to therapy. Here, we analyze the microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell transcriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC stroma, particularly in the fibroblast and immune cell compartments. We identify a tumor-specific subset of CST1+ myofibroblasts with prognostic values and potential biological significance. CST1+ myofibroblasts are also highly tumor-specific in other cancer types. Additionally, a subset of antigen-presenting fibroblasts is revealed and validated. Analyses of myeloid and T lymphoid lineages highlight the immunosuppressive nature of the ESCC microenvironment, and identify cancer-specific expression of immune checkpoint inhibitors. This work establishes a rich resource of stromal cell types of the ESCC microenvironment for further understanding of ESCC biology.


Assuntos
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Perfilação da Expressão Gênica , Análise de Célula Única , Microambiente Tumoral/genética , Apresentação de Antígeno , Biomarcadores Tumorais/metabolismo , Células Dendríticas/metabolismo , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/imunologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Células Mieloides/metabolismo , Miofibroblastos/patologia , Prognóstico , Cistatinas Salivares/metabolismo , Análise de Sobrevida , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
6.
Cancer Lett ; 522: 171-183, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571081

RESUMO

The clinical efficacy of cisplatin in the treatment of esophageal squamous cell carcinoma (ESCC) is undesirable. Signal transducer and activator of transcription 3ß (STAT3ß), a splice variant of STAT3, restrains STAT3α activity and enhances chemosensitivity in ESCC. However, the underlying molecular mechanisms remain poorly understood. Here, we found that high expression of STAT3ß contributes to cisplatin sensitivity and enhances Gasdermin E (GSDME) dependent pyroptosis in ESCC cells after exposure to cisplatin. Mechanistically, STAT3ß was located into the mitochondria and its high expression disrupts the activity of the electron transport chain, resulting in an increase of ROS in cisplatin treatment cells. While high levels of ROS caused activation of caspase-3 and GSDME, and induced cell pyroptosis. STAT3ß blocked the phosphorylation of STAT3α S727 in mitochondria by interacting with ERK1/2 following cisplatin treatment, disrupting electron transport chain and inducing activation of GSDME. Clinically, high expression of both STAT3ß and GSDME was strongly associated with better overall survival and disease-free survival of ESCC patients. Overall, our study reveals that STAT3ß sensitizes ESCC cells to cisplatin by disrupting mitochondrial electron transport chain and enhancing pyroptosis, which demonstrates the prognostic significance of STAT3ß in ESCC therapy.


Assuntos
Caspase 3/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Receptores de Estrogênio/genética , Fator de Transcrição STAT3/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Transporte de Elétrons/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Fosforilação/efeitos dos fármacos , Piroptose/efeitos dos fármacos
7.
Cancer Commun (Lond) ; 41(12): 1398-1416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555274

RESUMO

BACKGROUND: Fascin is crucial for cancer cell filopodium formation and tumor metastasis, and is functionally regulated by post-translational modifications. However, whether and how Fascin is regulated by acetylation remains unclear. This study explored the regulation of Fascin acetylation and its corresponding roles in filopodium formation and tumor metastasis. METHODS: Immunoprecipitation and glutathione-S-transferase pull-down assays were performed to examine the interaction between Fascin and acetyltransferase P300/CBP-associated factor (PCAF), and immunofluorescence was used to investigate their colocalization. An in vitro acetylation assay was performed to identify Fascin acetylation sites by using mass spectrometry. A specific antibody against acetylated Fascin was generated and used to detect the PCAF-mediated Fascin acetylation in esophageal squamous cell carcinoma (ESCC) cells using Western blotting by overexpressing and knocking down PCAF expression. An in vitro cell migration assay was performed, and a xenograft model was established to study in vivo tumor metastasis. Live-cell imaging and fluorescence recovery after photobleaching were used to evaluate the function and dynamics of acetylated Fascin in filopodium formation. The clinical significance of acetylated Fascin and PCAF in ESCC was evaluated using immunohistochemistry. RESULTS: Fascin directly interacted and colocalized with PCAF in the cytoplasm and was acetylated at lysine 471 (K471) by PCAF. Using the specific anti-AcK471-Fascin antibody, Fascin was found to be acetylated in ESCC cells, and the acetylation level was consequently increased after PCAF overexpression and decreased after PCAF knockdown. Functionally, Fascin-K471 acetylation markedly suppressed in vitro ESCC cell migration and in vivo tumor metastasis, whereas Fascin-K471 deacetylation exhibited a potent oncogenic function. Moreover, Fascin-K471 acetylation reduced filopodial length and density, and lifespan of ESCC cells, while its deacetylation produced the opposite effect. In the filipodium shaft, K471-acetylated Fascin displayed rapid dynamic exchange, suggesting that it remained in its monomeric form owing to its weakened actin-bundling activity. Clinically, high levels of AcK471-Fascin in ESCC tissues were strongly associated with prolonged overall survival and disease-free survival of ESCC patients. CONCLUSIONS: Fascin interacts directly with PCAF and is acetylated at lysine 471 in ESCC cells. Fascin-K471 acetylation suppressed ESCC cell migration and tumor metastasis by reducing filopodium formation through the impairment of its actin-bundling activity.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Actinas , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
8.
Nat Commun ; 12(1): 4961, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400640

RESUMO

Esophageal cancer (EC) is a type of aggressive cancer without clinically relevant molecular subtypes, hindering the development of effective strategies for treatment. To define molecular subtypes of EC, we perform mass spectrometry-based proteomic and phosphoproteomics profiling of EC tumors and adjacent non-tumor tissues, revealing a catalog of proteins and phosphosites that are dysregulated in ECs. The EC cohort is stratified into two molecular subtypes-S1 and S2-based on proteomic analysis, with the S2 subtype characterized by the upregulation of spliceosomal and ribosomal proteins, and being more aggressive. Moreover, we identify a subtype signature composed of ELOA and SCAF4, and construct a subtype diagnostic and prognostic model. Potential drugs are predicted for treating patients of S2 subtype, and three candidate drugs are validated to inhibit EC. Taken together, our proteomic analysis define molecular subtypes of EC, thus providing a potential therapeutic outlook for improving disease outcomes in patients with EC.


Assuntos
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Espectrometria de Massas/métodos , Proteômica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Estudos de Coortes , Elonguina/genética , Elonguina/metabolismo , Humanos , Prognóstico , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
9.
Cancers (Basel) ; 13(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670049

RESUMO

Concurrent chemoradiotherapy (CCRT), especially platinum plus radiotherapy, is considered to be one of the most promising treatment modalities for patients with advanced esophageal cancer. STAT3ß regulates specific target genes and inhibits the process of tumorigenesis and development. It is also a good prognostic marker and a potential marker for response to adjuvant chemoradiotherapy (ACRT). We aimed to investigate the relationship between STAT3ß and CCRT. We examined the expression of STAT3α and STAT3ß in pretreatment tumor biopsies of 105 ESCC patients who received CCRT by immunohistochemistry. The data showed that ESCC patients who demonstrate both high STAT3α expression and high STAT3ß expression in the cytoplasm have a significantly better survival rate, and STAT3ß expression is an independent protective factor (HR = 0.424, p = 0.003). Meanwhile, ESCC patients with high STAT3ß expression demonstrated a complete response to CCRT in 65 patients who received platinum plus radiation therapy (p = 0.014). In ESCC cells, high STAT3ß expression significantly inhibits the ability of colony formation and cell proliferation, suggesting that STAT3ß enhances sensitivity to CCRT (platinum plus radiation therapy). Mechanistically, through RNA-seq analysis, we found that the TNF signaling pathway and necrotic cell death pathway were significantly upregulated in highly expressed STAT3ß cells after CCRT treatment. Overall, our study highlights that STAT3ß could potentially be used to predict the response to platinum plus radiation therapy, which may provide an important insight into the treatment of ESCC.

10.
Aging (Albany NY) ; 12(2): 1332-1365, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31962291

RESUMO

Aberrant DNA methylation leads to abnormal gene expression, making it a significant regulator in the progression of cancer and leading to the requirement for integration of gene expression with DNA methylation. Here, we identified 120 genes demonstrating an inverse correlation between DNA methylation and mRNA expression in esophageal squamous cell carcinoma (ESCC). Sixteen key genes, such as SIX4, CRABP2, and EHD3, were obtained by filtering 10 datasets and verified in paired ESCC samples by qRT-PCR. 5-Aza-dC as a DNA methyltransferase (DNMT) inhibitor could recover their expression and inhibit clonal growth of cancer cells in seven ESCC cell lines. Furthermore, 11 of the 16 genes were correlated with OS (overall survival) and DFS (disease-free survival) in 125 ESCC patients. ChIP-Seq data and WGBS data showed that DNA methylation and H3K27ac histone modification of these key genes displayed inverse trends, suggesting that there was collaboration between DNA methylation and histone modification in ESCC. Our findings illustrate that the integrated multi-omics data (transcriptome and epigenomics) can accurately obtain potential prognostic biomarkers, which may provide important insight for the effective treatment of cancers.


Assuntos
Metilação de DNA , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Biomarcadores Tumorais , Biologia Computacional/métodos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/mortalidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Prognóstico , Análise de Sequência de DNA
11.
Eur J Gastroenterol Hepatol ; 32(9): 1200-1206, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31851092

RESUMO

OBJECTIVE: Radiofrequency ablation (RFA) is an effective and minimally invasive treatment for managing hepatic hemangiomas. Systemic inflammatory response syndrome (SIRS) often occurs with hemoglobinuria, and its underlying pathophysiological mechanism is unknown. Heme can trigger inflammation by inducing the generation of reactive oxygen species (ROS) and the production of inflammatory mediators. We therefore investigated whether circulating heme is involved in SIRS following RFA of hepatic hemangiomas. METHODS: We enrolled 65 patients with hepatic hemangioma who underwent RFA. Serum concentrations of free heme, ROS, and tumor necrosis factor α (TNF-α) were measured after RFA. Univariate analysis and a multivariate binary logistic regression model were used to evaluate the contribution of 17 risk factors for SIRS after RFA. RESULTS: Fifty-nine (59/65, 90.8%) patients developed hemoglobinuria, among which 25 (25/59, 42.4%) experienced SIRS shortly after RFA. In the SIRS group, the serum concentrations of heme, ROS, and TNF-α were immediately elevated after RFA compared with baseline and slowly regained their normal levels 3 days after RFA. Moreover, the concentrations of circulating heme significantly correlated with those of ROS (r = 0.805, P < 0.001) and TNF-α (r = 0.797, P < 0.001). Multivariate analysis showed that the volume of hemangioma [odds ratio (OR) = 1.293, P = 0.031], time of ablation (OR = 1.194, P = 0.029) as well as the concentrations of heme (OR = 1.430, P = 0.017), ROS (OR = 1.251, P = 0.031), and TNF-α (OR = 1.309, P = 0.032) were significantly associated with SIRS. CONCLUSION: Circulating heme was associated with the induction of ROS and the production of TNF-α, which may contribute to the induction of SIRS following RFA of hepatic hemangiomas.


Assuntos
Ablação por Cateter , Hemangioma , Neoplasias Hepáticas , Ablação por Radiofrequência , Ablação por Cateter/efeitos adversos , Hemangioma/cirurgia , Heme , Humanos , Neoplasias Hepáticas/cirurgia , Síndrome de Resposta Inflamatória Sistêmica/etiologia
12.
Am J Cancer Res ; 9(11): 2469-2481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815047

RESUMO

Epidemiological studies in high-incidence areas of esophageal cancer in China suggest that environmental carcinogen N-nitrosomethylbenzylamine (NMBA) and riboflavin (RBF) deficiency may be the main risk factors for esophageal cancer. However, it is not clear that the combination induces cancer. Here, experiment (Exp) 1 evaluated the effects of NMBA and RBF deficiency individually or in combination on esophageal tumorigenesis. Male F344 rats were randomly assigned to 4 groups into a 2 (no NMBA vs. NMBA) × 2 (normal RBF vs. RBF-deficient) factorial design, including normal RBF (6 mg/kg, R6), RBF-deficient (0 mg/kg, R0), normal RBF combined with NMBA (R6N), and RBF-deficient combined with NMBA (R0N) groups. The Exp 2 explored the effects of RBF deficiency at different doses combined with NMBA (0.6 mg/kg, R0.6N; 0.06 mg/kg, R0.06N) on esophageal tumorigenesis. Results showed that R0N enhanced the incidence of esophageal intraepithelial neoplasia (EIN, 53.3%, P = 0.06), including carcinoma in situ, whereas R6N mainly induced the occurrence of esophageal benign hyperplasia (38.9%) and EIN (16.7%). RBF deficiency promotes EIN in a dose-dependent manner, and R0.06N significantly increases the incidence of EIN (57.9%, P < 0.05). Gene expression profiling demonstrated that inflammatory cytokines were highly expressed in R0N EIN tissues, whereas R6N EIN tissues had a proliferation and differentiation gene signature (fold-change > 1.5). Furthermore, RBF deficiency aggravated oxidative DNA damage (8-OHdG) and double-strand breaks (γH2AX) (P < 0.05). Our results suggest that RBF deficiency causes chronic inflammation-associated genomic instability contributes to NMBA-induced esophageal tumorigenesis.

13.
Biomed Res Int ; 2019: 9828637, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886273

RESUMO

To precisely predict the clinical outcome and determine the optimal treatment options for patients with esophageal squamous cell carcinoma (ESCC) remains challenging. Prognostic models based on multiple molecular markers of tumors have been shown to have superiority over the use of single biomarkers. Our previous studies have identified the crucial role of ezrin in ESCC progression, which prompted us to hypothesize that ezrin-associated proteins contribute to the pathobiology of ESCC. Herein, we explored the clinical value of a molecular model constructed based on ezrin-associated proteins in ESCC patients. We revealed that the ezrin-associated proteins (MYC, PDIA3, and ITGA5B1) correlated with the overall survival (OS) and disease-free survival (DFS) of patients with ESCC. High expression of MYC was associated with advanced pTNM-stage (P=0.011), and PDIA3 and ITGA5B1 were correlated with both lymph node metastasis (PDIA3: P < 0.001; ITGA5B1: P=0.001) and pTNM-stage (PDIA3: P=0.001; ITGA5B1: P=0.009). Furthermore, we found that, compared with the current TNM staging system, the molecular model elicited from the expression of MYC, PDIA3, and ITGA5B1 shows higher accuracy in predicting OS (P < 0.001) or DFS (P < 0.001) in ESCC patients. Moreover, ROC and regression analysis demonstrated that this model was an independent predictor for OS and DFS, which could also help determine a subgroup of ESCC patients that may benefit from chemoradiotherapy. In conclusion, our study has identified a novel molecular prognosis model, which may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for ESCC treatment.


Assuntos
Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Modelos Genéticos , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Valor Preditivo dos Testes , Prognóstico
14.
Onco Targets Ther ; 12: 6839-6842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692527

RESUMO

Hepatic sclerosing hemangioma is a rare benign disease that occurs in association with hepatic cavernous hemangioma degeneration and sclerosis. Recent studies have shown that radiofrequency (RF) ablation is an alternative treatment for hepatic cavernous hemangiomas, even for large hemangiomas (≥10 cm). However, RF ablation might not be suitable to treat large sclerosing hemangiomas. We herein report the successful surgical removal of a large hepatic sclerosing hemangioma after RF ablation treatment failure in a 65-year-old man. In conclusion, we suggest that resection should be chosen as a first-line therapy for the disease.

15.
Cancer Res ; 79(19): 4951-4964, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409639

RESUMO

Lysyl oxidase-like 2 (LOXL2), a copper-dependent enzyme of the lysyl oxidase family and its nonsecreted, catalytically dead spliced isoform L2Δ13, enhance cell migration and invasion, stimulate filopodia formation, modulate the expression of cytoskeletal genes, and promote tumor development and metastasis in vivo. We previously showed that LOXL2 reorganizes the actin cytoskeleton in esophageal squamous cell carcinoma (ESCC) cells, however, the underlying molecular mechanisms were not identified. Here, using interactome analysis, we identified ezrin (EZR), fascin (FSCN1), heat shock protein beta-1 (HSPB1), and tropomodulin-3 (TMOD3) as actin-binding proteins that associate with cytoplasmic LOXL2, as well as with its L2Δ13 variant. High levels of LOXL2 and L2Δ13 and their cytoskeletal partners correlated with poor clinical outcome in patients with ESCC. To better understand the significance of these interactions, we focused on the interaction of LOXL2 with ezrin. Phosphorylation of ezrin at T567 was greatly reduced following depletion of LOXL2 and was enhanced following LOXL2/L2Δ13 reexpression. Furthermore, LOXL2 depletion inhibited the ability of ezrin to promote tumor progression. These results suggest that LOXL2-induced ezrin phosphorylation, which also requires PKCα, is critical for LOXL2-induced cytoskeletal reorganization that subsequently promotes tumor cell invasion and metastasis in ESCC. In summary, we have characterized a novel molecular mechanism that mediates, in part, the protumorigenic activity of LOXL2. These findings may enable the future development of therapeutic agents targeting cytoplasmic LOXL2. SIGNIFICANCE: LOXL2 and its spliced isoform L2Δ13 promote cytoskeletal reorganization and invasion of esophageal cancer cells by interacting with cytoplasmic actin-binding proteins such as ezrin.


Assuntos
Aminoácido Oxirredutases/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Invasividade Neoplásica/patologia , Animais , Citoesqueleto/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fosforilação , Regulação para Cima
16.
Open Med (Wars) ; 14: 398-402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157306

RESUMO

In recent years, radiofrequency (RF) ablation has been increasingly used for treating hepatic hemangiomas attributing to its unique advantages, such as minimal invasiveness, definite efficacy, high safety, fast recovery, and wide applicability. However, complications related to RF ablation had been frequently reported, especially while being used for treating huge hemangioma (≥10 cm). Cautious measures had been taken to prevent the incidence of ablation-induced complications, but still unexpected complications occurred. Herein we reported a case of severe myocardial dysfunction along with systemic inflammatory response syndrome occurring immediately post RF ablation of a 10.7 cm hemangioma. This serious complication was effectively managed by supportive care with the full recovery in a short period of time.

17.
BMB Rep ; 52(4): 277-282, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30940322

RESUMO

Currently speaking, it is noted that radiofrequency ablation (RFA) has been the most widely used treatment for hepatocellular carcinoma (HCC) occurring in patients. However, accumulating evidence has demonstrated that the incidence of insufficient RFA (IRFA) may result in the identified rapid progression of residual HCC in the patient, which can greatly hinder the effectiveness and patient reported benefits of utilizing this technique. Although many efforts have been proposed, the underlying mechanisms triggering the rapid progression of residual HCC after IRFA have not yet been fully clarified through current research literature reviews. It was shown in this study that cell proliferation, migration and invasion of residual HepG2 and SMMC7721 cells were significantly increased after the IRFA was simulated in vitro. In other words, it is noted that IRFA could do this by enhancing the image of autophagy of the residual HCC cell via the HIF-1α/BNIP3 pathway. Consequently, the down-regulation of BNIP3 may result in the inhibition of the residual HCC cell progression and autophagy after IRFA. Our present study results suggest that IRFA could promote residual HCC cell progression in vitro by enhancing autophagy via the HIF-1α/BNIP3 pathway. For this reason, it is noted that the targeting of the BNIP3 may be useful in preventing the rapid growth and metastasis of residual HCC after IRFA. [BMB Reports 2019; 52(4): 277-282].


Assuntos
Carcinoma Hepatocelular/terapia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/terapia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ablação por Radiofrequência/métodos , Autofagia/efeitos da radiação , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ablação por Radiofrequência/tendências , Transdução de Sinais
18.
Pathol Res Pract ; 215(6): 152406, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30967300

RESUMO

BACKGROUND: Cyclin-dependent kinase 8 (CDK8) as a Mediator complex-associated transcriptional regulator has been shown to play important role in the initiation and progression of various cancers. The present study aimed to explore miR-152-3p-modulated post-transcriptional repression of CDK8 in hepatic carcinogenesis. METHODS: Eighty-nine pairs of hepatocellular carcinoma (HCC) and adjacent non-tumor tissues were collected for molecular biological analysis. Cell viability and apoptosis assays were detected using CCK8 and Annexin V-fluorescein isothiocyanate/propidium iodide (Annexinv-FITC) double staining, respectively. Bioinformatics algorithms and luciferase reporter assay were performed to validate CDK8 as a direct target of miR-152-3p. Gene and protein expression levels were monitored using RT-qPCR, western blotting or immunohistochemical (IHC) staining. RESULTS: CDK8 expression levels were up-regulated and miR-152-3p was down-regulated in HCC tissues. The correlation analysis had documented a significant negative correlation between miR-152-3p and CDK8 in the HCC tissues. Both CDK8 and miR-152-3p could serve as the independent prognostic factors for predicting the OS and DFS in HCC patients. Bioinformatics and experimental measurement revealed that CDK8 was a direct target of miR-152-3p. After co-transfection with the miR-152-3p mimics and the CDK8 overexpressed plasmids, the anti-proliferative and pro-apoptotic roles of miR-152-3p were restricted by CDK8. CONCLUSION: The present results obtained forcefully proved that miR-152-3p exhibited an antineoplastic activity via targeting CDK8 and might be served as a potential therapeutic target for the treatment of HCC.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Quinase 8 Dependente de Ciclina/biossíntese , Neoplasias Hepáticas/genética , MicroRNAs/genética , Adulto , Idoso , Carcinoma Hepatocelular/patologia , Quinase 8 Dependente de Ciclina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade
19.
Br J Cancer ; 118(11): 1476-1484, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29765149

RESUMO

BACKGROUND: Oesophageal squamous cell carcinoma (ESCC) is one of the most malignant cancers worldwide. Treatment of ESCC is in progress through accurate staging and risk assessment of patients. The emergence of potential molecular markers inspired us to construct novel staging systems with better accuracy by incorporating molecular markers. METHODS: We measured H scores of 23 protein markers and analysed eight clinical factors of 77 ESCC patients in a training set, from which we identified an optimal MASAN (MYC, ANO1, SLC52A3, Age and N-stage) signature. We constructed MASAN models using Cox PH models, and created MASAN-staging systems based on k-means clustering and minimum-distance classifier. MASAN was validated in a test set (n = 77) and an independent validation set (n = 150). RESULTS: MASAN possessed high predictive accuracies and stratified ESCC patients into three prognostic groups that were more accurate than the current pTNM-staging system for both overall survival and disease-free survival. To facilitate clinical utilisation, we also constructed MASAN-SI staging systems based on staining indices (SI) of protein markers, which possessed similar prognostic performance as MASAN. CONCLUSION: MASAN provides a good alternative staging system for ESCC prognosis with a high precision using a simple model.


Assuntos
Anoctamina-1/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores Etários , Algoritmos , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Sensibilidade e Especificidade , Análise de Sobrevida , Análise Serial de Tecidos
20.
Oncol Lett ; 15(6): 9353-9360, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805660

RESUMO

5-lipoxygenase (5-LO) catalyzes the first step of arachidonic acid metabolism to inflammatory mediator leukotrienes. The present study assessed 5-LO expression in esophageal squamous cell carcinoma (ESCC) tissue specimens for associations with clinicopathological and survival data from patients, then explored 5-LO activity in ESCC cells in vitro. 5-LO expression was detected in tissue microarrays containing 297 ESCC samples using immunohistochemistry. Kaplan-Meier curves were used to analyze the survival significance of 5-LO expression and relative risk was evaluated using the multivariate Cox proportional hazards model. Cultured tumor cells were subjected to gene transfection, western blotting, and cell migration and proliferation assays. 5-LO protein was primarily expressed in normal cell cytoplasm and/or membrane, and never in the whole cytoplasm, whereas 5-LO was expressed diffusely in ESCC tissues with nearly homogeneous whole-cytoplasm staining. 5-LO expression was significantly associated with tumor regional lymph node metastasis (P=0.013) and pTNM stage (P=0.004). 5-LO expression was associated with poor overall survival (P=0.029). Multivariate analysis demonstrated that 5-LO overexpression was an independent prognostic factor for ESCC patients (P=0.041). Furthermore, the inhibition of 5-LO expression reduced ESCC cell viability and migration in vitro. These data provide further evidence that the upregulation of 5-LO expression is associated with advanced stages of disease and poor ESCC prognosis, and that 5-LO expression may independently predict overall survival in patients with ESCC. The inhibition of 5-LO expression reduced ESCC malignant behavior in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...